module approximate amenability of banach algebras
Authors
abstract
in the present paper, the concepts of module (uniform) approximate amenability and contractibility of banach algebras that are modules over another banach algebra, are introduced. the general theory is developed and some hereditary properties are given. in analogy with the banach algebraic approximate amenability, it is shown that module approximate amenability and contractibility are the same properties. it is also shown that module uniform approximate (contractibility) amenability and module (contractibility, respectively) amenability for commutative banach modules are equivalent. applying these results to l^1 (s) as an l^1 (e)-module, for an inverse semigroup s with the set ofidempotents e, it is shown that l^1(s) is module approximately amenable (contractible) if and only if it is module uniformly approximately amenable if and only if s is amenable.moreover, l^1(s)^{**} is module (uniformly) approximately amenable if and only if an appropriate group homomorphic image of s is finite.
similar resources
Module approximate amenability of Banach algebras
In the present paper, the concepts of module (uniform) approximate amenability and contractibility of Banach algebras that are modules over another Banach algebra, are introduced. The general theory is developed and some hereditary properties are given. In analogy with the Banach algebraic approximate amenability, it is shown that module approximate amenability and contractibility are the same ...
full textApproximate $n-$ideal amenability of module extension Banach algebras
Let $mathcal{A}$ be a Banach algebra and $X$ be a Banach $mathcal{A}-$bimodule. We study the notion of approximate $n-$ideal amenability for module extension Banach algebras $mathcal{A}oplus X$. First, we describe the structure of ideals of this kind of algebras and we present the necessary and sufficient conditions for a module extension Banach algebra to be approximately n-ideally amenable.
full textModule Amenability of module dual Banach algebras
In this paper we defined the concept of module amenability of Banach algebras and module connes amenability of module dual Banach algebras.Also we assert the concept of module Arens regularity that is different with [1] and investigate the relation between module amenability of Banach algebras and connes module amenability of module second dual Banach algebras.In the following we studythe...
full textamenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولModule-Amenability on Module Extension Banach Algebras
Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...
full textBounded Approximate Character Amenability of Banach Algebras
The bounded approximate version of $varphi$-amenability and character amenability are introduced and studied. These new notions are characterized in several different ways, and some hereditary properties of them are established. The general theory for these concepts is also developed. Moreover, some examples are given to show that these notions are different from the others. Finally, bounded ap...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 39
issue 6 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023